Indian Statistical Institute, Bangalore

B. Math (Hons.) Third Year Second Semester - Complex Analysis

Final Exam

Maximum marks: 50

Date: 23rd April 2025

Duration: 3 hours

Let $U = \{ z \in \mathbb{C} \mid |z| < 1 \}.$

Section I: Answer any four and each question carries 6 marks

- 1. Prove Cauchy-Riemann equation for analytic functions.
- 2. Suppose $f \in H(U)$ with $|f(z)| \le 1$ for all $z \in U$. Prove that there is a r > 0 such that $|f(z)| \le |f(0)| + \frac{3}{2}|z|$ for all z with |z| < r.
- 3. Suppose (f_n) is a sequence in $H(\Omega)$ and $f:\Omega \to \mathbb{C}$ is a function such that $f_n \to f$ uniformly on compact subsets of Ω . Prove that $f \in H(\Omega)$ and $f'_n \to f'$ uniformly on compact subsets of Ω .
- 4. Suppose $f: U \to U$ is analytic and f(0) = 0. Prove that $|f(z)| \le |z|$ for all $z \in U$ and $|f'(0)| \le 1$. If |f(z)| = |z| for some $z \in U \setminus \{0\}$ or |f'(0)| = 1, prove that $f(z) = \lambda z$ for all $z \in U$ for some constant λ .
- 5. If $\lambda > 1$, find the cardinality of $\{z \in \mathbb{C} \mid \lambda z e^{-z} = 0, z + \overline{z} > 0\}$. Justify your answer.
- 6. Evaluate $\int_0^\pi \frac{dx}{\sqrt{5} + \cos x}$ by residue theorem.

Section II: Answer any two, each question carries 13 marks

- 1. (a) Prove that the set of zeros of a non-zero analytic function on a region Ω has no limit point in Ω (Marks: 6).
 - (b) Determine all entier functions f such that $\Re(f(z)) \neq 0$ for all $z \in \mathbb{C}$ or $\Re(f(z)) \neq \pm \Im(f(z))$ for all $z \in \mathbb{C}$.
- 2. (a) Find all bijective analytic functions from U onto U with analytic inverse.
 - (b) If f has no essential singularity at z = a, prove that f has a removable singularity or a pole at z = a (Marks: 6).
- 3. (a) State and prove the residue theorem (Marks: 7).
 - (b) Find all $f \in H(\mathbb{C})$ for which $f_*: \mathbb{C} \setminus \{0\} \to \mathbb{C}$ defined by $f_*(z) = f(1/z)$ for all $z \in \mathbb{C} \setminus \{0\}$ has no essential singularity at z = 0.